数据转换实在是个烦人的工作,被折磨了很久决定抽出时间整理一下,仅供参考。
在一个项目中,我需要将已有的VOC的xml标注文件转化成COCO的数据格式,为了方便理解,文章按如下顺序介绍:
- XML文件内容长什么样
- COCO的数据格式长什么样
- XML如何转化成COCO格式
下面我只把重要信息题练出来,如下所示:
文件夹目录 图片名.jpg path_to\at002eg001.jpg Unknown 550 518 3 0 Apple Unspecified 0 0 292 218 410 331 ...
可以看到一个xml文件包含如下信息:
- folder: 文件夹
- filename:文件名
- path:路径
- source:我项目里没有用到
- size:图片大小
- segmented:图像分割会用到,本文仅以目标检测(bounding box为例进行介绍)
- object:一个xml文件可以有多个object,每个object表示一个box,每个box有如下信息组成:
- name:改box框出来的object属于哪一类,例如Apple
- bndbox:给出左上角和右下角的坐标
- truncated:略
- difficult:略
不同于VOC,一张图片对应一个xml文件,coco是直接将所有图片以及对应的box信息写在了一个json文件里。通常整个coco目录长这样:
coco|______annotations # 存放标注信息| |__train.json| |__val.json| |__test.json|______trainset # 存放训练集图像|______valset # 存放验证集图像|______testset # 存放测试集图像COCO的json文件啥样?
一个标准的json文件包含如下信息:
{ "info": info, "images": [image], "annotations": [annotation], "licenses": [license],}info{ "year": int, "version": str, "description": str, "contributor": str, "url": str, "date_created": datetime, }image{ "id": int, "width": int, "height": int, "file_name": str, "license": int, "flickr_url": str, "coco_url": str, "date_captured": datetime, }license{ "id": int, "name": str, "url": str, }
是不是有点抽象?官网就是这样的,酸爽不酸爽,反正我看官网看的一脸懵。。。可能是还欠点修行
那么json里具体每一个是干嘛用的呢?且let me一一道来。(散装英语说的好爽)
- info: 这个记录的是你的数据集信息,例如
"info": { # 数据集信息描述 "description": "COCO 2017 Dataset", # 数据集描述 "url": "http://cocodataset.org", # 下载地址 "version": "1.0", # 版本 "year": 2017, # 年份 "contributor": "COCO Consortium", # 提供者 "date_created": "2017/09/01" # 数据创建日期 } `
- licenses: 记录的就是license。。。,license可以有多个,因为可能你是从多个渠道获得的数据,例如
"licenses": [ { "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/", "id": 1, "name": "Attribution-NonCommercial-ShareAlike License" }, …… …… ],
- images:这个其实就是记录每一张图片的信息,主要的有 文件名、宽、高、id,其他的可选,如:
"images": [ { "file_name": "000000397133.jpg", # 图片名 "id": 397133 # 图片的ID编号(每张图片ID是唯一的) "height": 427, # 高 "width": 640, # 宽 "license": 4, "coco_url": "http://images.cocodataset.org/val2017/000000397133.jpg",# 网路地址路径 "date_captured": "2013-11-14 17:02:52", # 数据获取日期 "flickr_url": "http://farm7.staticflickr.com/6116/6255196340_da26cf2c9e_z.jpg",# flickr网路地址 }, ……, …… ]
- categories:这个很好理解,就是你的类别信息。
其中需要注意的是:- 有一个key是“supercategory”,之所以有这个是因为在COCO数据集中有的类别其实是可以归类为同一类的,例如猫和狗都属于Animal
- id编号是从1开始的,0默认为背景
示例如下:
"categories": [ { "supercategory": "person", # 主类别 "id": 1, # 类对应的id (0 默认为背景) "name": "person" # 子类别 }, { "supercategory": "Animal", "id": 2, "name": "bicycle" }, { "supercategory": "vehicle", "id": 3, "name": "car" }, …… …… ],如何将XML转化为COCO格式
下面直接搬运别人已经写好的代码,亲测有效。使用注意事项:须先安装lxml库,另外你要确保你的xml文件里类别不要出错,例如我自己的数据集因为有的类别名称多了个下划线或者其他手贱误敲的字母,导致这些类别就被当成新的类别了。祝好运。
#!/usr/bin/python# pip install lxmlimport sysimport osimport jsonimport xml.etree.ElementTree as ETSTART_BOUNDING_BOX_ID = 1PRE_DEFINE_CATEGORIES = {}# If necessary, pre-define category and its id# PRE_DEFINE_CATEGORIES = {"aeroplane": 1, "bicycle": 2, "bird": 3, "boat": 4, # "bottle":5, "bus": 6, "car": 7, "cat": 8, "chair": 9, # "cow": 10, "diningtable": 11, "dog": 12, "horse": 13, # "motorbike": 14, "person": 15, "pottedplant": 16, # "sheep": 17, "sofa": 18, "train": 19, "tvmonitor": 20}def get(root, name): vars = root.findall(name) return varsdef get_and_check(root, name, length): vars = root.findall(name) if len(vars) == 0: raise NotImplementedError('Can not find %s in %s.'%(name, root.tag)) if length > 0 and len(vars) != length: raise NotImplementedError('The size of %s is supposed to be %d, but is %d.'%(name, length, len(vars))) if length == 1: vars = vars[0] return varsdef get_filename_as_int(filename): try: filename = os.path.splitext(filename)[0] return int(filename) except: raise NotImplementedError('Filename %s is supposed to be an integer.'%(filename))def convert(xml_list, xml_dir, json_file): list_fp = open(xml_list, 'r') json_dict = {"images":[], "type": "instances", "annotations": [], "categories": []} categories = PRE_DEFINE_CATEGORIES bnd_id = START_BOUNDING_BOX_ID for line in list_fp: line = line.strip() print("Processing %s"%(line)) xml_f = os.path.join(xml_dir, line) tree = ET.parse(xml_f) root = tree.getroot() path = get(root, 'path') if len(path) == 1: filename = os.path.basename(path[0].text) elif len(path) == 0: filename = get_and_check(root, 'filename', 1).text else: raise NotImplementedError('%d paths found in %s'%(len(path), line)) ## The filename must be a number image_id = get_filename_as_int(filename) size = get_and_check(root, 'size', 1) width = int(get_and_check(size, 'width', 1).text) height = int(get_and_check(size, 'height', 1).text) image = {'file_name': filename, 'height': height, 'width': width, 'id':image_id} json_dict['images'].append(image) ## Cruuently we do not support segmentation # segmented = get_and_check(root, 'segmented', 1).text # assert segmented == '0' for obj in get(root, 'object'): category = get_and_check(obj, 'name', 1).tex����,�Ӽ�t if category not in categories: new_id = len(categories) categories[category] = new_id category_id = categories[category] bndbox = get_and_check(obj, 'bndbox', 1) xmin = int(get_and_check(bndbox, 'xmin', 1).text) - 1 ymin = int(get_and_check(bndbox, 'ymin', 1).text) - 1 xmax = int(get_and_check(bndbox, 'xmax', 1).text) ymax = int(get_and_check(bndbox, 'ymax', 1).text) assert(xmax > xmin) assert(ymax > ymin) o_width = abs(xmax - xmin) o_height = abs(ymax - ymin) ann = {'area': o_width*o_height, 'iscrowd': 0, 'image_id': image_id, 'bbox':[xmin, ymin, o_width, o_height], 'category_id': category_id, 'id': bnd_id, 'ignore': 0, 'segmentation': []} json_dict['annotations'].append(ann) bnd_id = bnd_id + 1 for cate, cid in categories.items(): cat = {'supercategory': 'none', 'id': cid, 'name': cate} json_dict['categories'].append(cat) json_fp = open(json_file, 'w') json_str = json.dumps(json_dict) json_fp.write(json_str) json_fp.close() list_fp.close()if __name__ == '__main__': if len(sys.argv) <= 1: print('3 auguments are need.') print('Usage: %s XML_LIST.txt XML_DIR OUTPU_JSON.json'%(sys.argv[0])) exit(1) convert(sys.argv[1], sys.argv[2], sys.argv[3])