伍佰目录 短网址
  当前位置:海洋目录网 » 站长资讯 » 站长资讯 » 文章详细 订阅RssFeed

Tensorcore使用方法

来源:本站原创 浏览:147次 时间:2021-09-04
用于深度学习的自动混合精度

深度神经网络训练传统上依赖IEEE单精度格式,但在混合精度的情况下,可以训练半精度,同时保持单精度网络的精度。这种同时使用单精度和半精度表示的技术称为混合精度技术。

混����,����合精度训练的好处

通过使用Tensor Core加速数学密集型运算,如线性和卷积层。

与单精度相比,通过访问一半的字节可以加快内存受限的操作。

减少训练模型的内存需求,支持更大的模型或更小的批。

启用混合精度涉及两个步骤:在适当的情况下,将模型移植到使用半精度数据类型;并使用损失缩放来保持较小的梯度值。

TensorFlow、PyTorch和MXNet中的自动混合精度特性为深度学习研究人员和工程师提供了在NVIDIA Volta和Turing gpu上最多3倍的人工智能训练速度,而只需要添加几行代码。

使用自动混合精度的主要深度学习框架
  • TensorFlow

在NVIDIA NGC容器注册表中提供的TensorFlow容器中提供了自动混合精度特性。要在容器内启用此功能,只需设置一个环境变量:

export TF_ENABLE_AUTO_MIXED_PRECISION=1

另外,环境变量可以在TensorFlow Python脚本中设置:

os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'

另外还需要对优化器(Optimizer)作如下修改:

optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(optimizer) # 需要添加这句话,该例子是tf1.14.0版本,不同版本可能不一样

自动混合精度在TensorFlow内部应用这两个步骤,使用一个环境变量,并在必要时进行更细粒度的控制。

  • PyTorch

自动混合精度特性在GitHub上的Apex repository中可用。要启用,请将这两行代码添加到您现有的训练脚本中:

model, optimizer = amp.initialize(model, optimizer)with amp.scale_loss(loss, optimizer) as scaled_loss:    scaled_loss.backward()
  • MXNet

NVIDIA正在为MXNet构建自动混合精度特性。你可以在GitHub上找到正在进行的工作。要启用该功能,请在现有的训练脚本中添加以下代码行:

amp.init()amp.init_trainer(trainer)with amp.scale_loss(loss, trainer) as scaled_loss:   autograd.backward(scaled_loss)


  推荐站点

  • At-lib分类目录At-lib分类目录

    At-lib网站分类目录汇集全国所有高质量网站,是中国权威的中文网站分类目录,给站长提供免费网址目录提交收录和推荐最新最全的优秀网站大全是名站导航之家

    www.at-lib.cn
  • 中国链接目录中国链接目录

    中国链接目录简称链接目录,是收录优秀网站和淘宝网店的网站分类目录,为您提供优质的网址导航服务,也是网店进行收录推广,站长免费推广网站、加快百度收录、增加友情链接和网站外链的平台。

    www.cnlink.org
  • 35目录网35目录网

    35目录免费收录各类优秀网站,全力打造互动式网站目录,提供网站分类目录检索,关键字搜索功能。欢迎您向35目录推荐、提交优秀网站。

    www.35mulu.com
  • 就要爱网站目录就要爱网站目录

    就要爱网站目录,按主题和类别列出网站。所有提交的网站都经过人工审查,确保质量和无垃圾邮件的结果。

    www.912219.com
  • 伍佰目录伍佰目录

    伍佰网站目录免费收录各类优秀网站,全力打造互动式网站目录,提供网站分类目录检索,关键字搜索功能。欢迎您向伍佰目录推荐、提交优秀网站。

    www.wbwb.net