伍佰目录 短网址
  当前位置:海洋目录网 » 站长资讯 » 站长资讯 » 文章详细 订阅RssFeed

预处理之白化

来源:本站原创 浏览:126次 时间:2022-01-28
预处理之白化

Fighting365 机器学习算法与Python学习

Contents

1 关键词
2 白化介绍
3 2D的例子
4 ZCA白化
5 正则化

1. 关键词
白化         whitening冗余         redundant方差         variance平滑         smoothing降维         dimensionality reduction正则化      regularization反射矩阵   reflection matrix去相关      decorrelation
2. 白化介绍

在(自动编码器优化之主成分分析)中,我们已经了解了如何使用PCA降低数据维度。在一些算法中还需要一个与之相关的预处理步骤,这个预处理过程称为白化(一些文献中也叫sphering)。举例来说,假设训练数据是图像,由于图像中相邻像素之间具有很强的相关性,所以用于训练时输入是冗余的。白化的目的就是降低输入的冗余性;更正式的说,我们希望通过白化过程使得学习算法的输入具有如下性质:
(i) 特征之间相关性较低;
(ii )所有特征具有相同的方差。

3. 2D的例子

下面我们先用一个2D例子描述白化的主要思想,然后分别介绍如何将白化与平滑和PCA相结合。
如何消除输入特征之间的相关性? 在前文(自动编码器优化之主成分分析)计算 x[^i][rot] = U[^T]x[^i] 时实际上已经消除了输入特征 x[i] 之间的相关性。得到的新特征 x[rot] 的分布如下图所示:

这个数据的协方差矩阵如下:

严格地讲, 这部分许多关于“协方差”的陈述仅当数据均值为0时成立。下文的论述都隐式地假定这一条件成立。不过即使数据均值不为0,下文的说法仍然成立,所以你无需担心这个。

x[rot] 协方差矩阵对角元素的值为 λ[1] 和 λ[2] 绝非偶然, 并且非对角元素值为0; 因此, x[rot,1]和 x[rot,2] 是不相关的, 满足我们对白化结果的第一个要求 (特征间相关性降低)。
为了使每个输入特征具有单位方差,我们可以直接使用 1/ sqrt(λ[i]) 作为缩放因子来缩放每个特征。具体地,我们定义白化后的数据 如下:

绘制出 x[PCAwhite],我们得到:

这些数据现在的协方差矩阵为单位矩阵 I 。我们说,x[PCAwhite] 是数据经过PCA白化后的版本: x[PCAwhite] 中不同的特征之间不相关并且具有单位方差。
白化与降维相结合。 如果你想要得到经过白化后的数据,并且比初始输入维数更低,可以仅保留 x[PCAwhite] 中前 k 个成分。当我们把PCA白化和正则化结合起来时,x[PCAwhite] 中最后的少量成分将总是接近于0,因而舍弃这些成分不会带来很大的问题。

4. ZCA白化

最后要说明的是,使数据的协方差矩阵变为单位矩阵 I 的方式并不唯一。具体地,如果 R 是任意正交矩阵,即满足 RR[^T] = R[^T]R = I (说它正交不太严格,R 可以是旋转或反射矩阵),那么 R x[PCAwhite] 仍然具有单位协方差。在ZCA白化中,ϵ��,ǣ��令 R = U 。我们定义ZCA白化的结果为:

绘制x[ZCAwhite], 得到:

可以证明,对所有可能的 R ,这种旋转使得 x[Zcawhite] 尽可能地接近原始输入数据 。当使用 ZCA白化时(不同于 PCA白化),我们通常保留数据的全部 n 个维度,不尝试去降低它的维数。

5. 正则化

实践中需要实现PCA白化或ZCA白化时,有时一些特征值 λ[i 在数值上接近于0,这样在缩放步骤时我们除以 sqrt(λ[i]) 将导致除以一个接近0的值;这可能使数据上溢 (赋为大数值)或造成数值不稳定。因而在实践中,我们使用少量的正则化实现这个缩放过程,即在取平方根和倒数之前给特征值加上一个很小的常数 :

当x在区间 [-1, 1] 上时,一般取值为10[^(-5)]。对图像来说, 这里加上,对输入图像也有一些平滑(或低通滤波)的作用。这样处理还能消除在图像的像素信息获取过程中产生的噪声,改善学习到的特征。
ZCA 白化是一种数据预处理方法,它将数据从 x 映射到 x[ZCAwhite]。 事实证明这也是一种生物眼睛(视网膜)处理图像的粗糙模型。具体而言,当你的眼睛感知图像时,由于一幅图像中相邻的部分在亮度上十分相关,大多数临近的“像素”在眼中被感知为相近的值。因此,如果人眼需要分别传输每个像素值(通过视觉神经)到大脑中,会非常不划算。取而代之的是,视网膜进行一个与ZCA中相似的去相关操作 (这是由视网膜上的ON-型和OFF-型光感受器细胞将光信号转变为神经信号完成的)。由此得到对输入图像的更低冗余的表示,并将它传输到大脑。

参考文献:http://cs229.stanford.edu

  推荐站点

  • At-lib分类目录At-lib分类目录

    At-lib网站分类目录汇集全国所有高质量网站,是中国权威的中文网站分类目录,给站长提供免费网址目录提交收录和推荐最新最全的优秀网站大全是名站导航之家

    www.at-lib.cn
  • 中国链接目录中国链接目录

    中国链接目录简称链接目录,是收录优秀网站和淘宝网店的网站分类目录,为您提供优质的网址导航服务,也是网店进行收录推广,站长免费推广网站、加快百度收录、增加友情链接和网站外链的平台。

    www.cnlink.org
  • 35目录网35目录网

    35目录免费收录各类优秀网站,全力打造互动式网站目录,提供网站分类目录检索,关键字搜索功能。欢迎您向35目录推荐、提交优秀网站。

    www.35mulu.com
  • 就要爱网站目录就要爱网站目录

    就要爱网站目录,按主题和类别列出网站。所有提交的网站都经过人工审查,确保质量和无垃圾邮件的结果。

    www.912219.com
  • 伍佰目录伍佰目录

    伍佰网站目录免费收录各类优秀网站,全力打造互动式网站目录,提供网站分类目录检索,关键字搜索功能。欢迎您向伍佰目录推荐、提交优秀网站。

    www.wbwb.net