伍佰目录 短网址
  当前位置:海洋目录网 » 站长资讯 » 站长资讯 » 文章详细 订阅RssFeed

字符型验证码识别

来源:本站原创 浏览:112次 时间:2022-10-08
字符型验证码1. 什么是验证码

在开发爬虫的过程中会遇到一种常见的反爬措施,验证码。验证码(CAPTCHA)是“Completely Automated Public Turing test to tell Computers and Humans Apart”(全自动区分计算机和人类的图灵测试)的缩写,是一种区分用户是计算机还是人的公共全自动程序。

2. pillow

Python传统的图像处理库PIL(Python Imaging Library ),可以说基本上是Python处理图像的标准库,功能强大,使用简单。

官方文档:https://pillow.readthedocs.io/en/latest/installation.html

Pillow的安装比较的简单,直接pip安装即可:

pip install Pillow

由于是继承自PIL的分支,所以Pillow的导入是这样的:

import PIL 
# 或者
from PIL import Image
3.常用属性
  • PIL.Image.filename

    图像源文件的文件名或者路径,只有使用open()方法创建的对象有这个属性。

    类型:字符串

  • PIL.Image.format

    图像源文件的文件格式。

  • PIL.Image.mode

    图像的模式,一般来说是“1”, “L”, “RGB”, 或者“CMYK” 。

  • PIL.Image.size

    图像的大小

  • PIL.Image.width

    图像的宽度

  • PIL.Image.height

    图像的高度

  • PIL.Image.info

    图像的一些信息,为字典格式

字符串验证码的处理

这是code.png

4.1 灰度化

一张图片由很多像素点构成,一个像素点的颜色是由RGB三个值来表现的
R=G=B 这个值就叫做灰度值  白色255 黑色0

R * 0.3 +G * 0.59 + B * 0.11

from PIL import Image
image = Image.open('code.png')
im = image.convert('L')
im.show()

效果如下

4.2 二值化

先灰度在二值化

利用一个阈值来判断一个图像的像素点是0还是255,小于阈值像素点就变为0,大于阈值像素点编程255

常用阈值选择的方法是:

  • 灰度平局值法:取127 (0~255的中数, (0+255)/2 = 127)

平均值法:

  • 计算像素点矩阵中的所有像素点的灰度值的平均值avg

from PIL import Image
def binazing(image):
    '''
    对图片进行灰度和二值化
    :param image:
    :return:
    '''
    image = image.convert('L')
    # 增强对比度
    image = image.point(lambda x: 1.2 * x)
    w,h = image.size
    # print(w,h)
    ### 二值化
    pixdata = image.load()
    for i in range(h):
        for j in range(w):

            if pixdata[j,i] > 170:
                pixdata[j,i] = 255
            else:
                pixdata[j, i] = 0
    return image
if __name__ == '__main__':
    image = Image.open('code.png')
    image = binazing(image)
    image.show()

效果如下

4.3 降噪

经过了二值化处理,整个图片像素就被分为了两个值0和255, 如果一个像素点是图片或者干扰因素的一部分,那么她的灰度值一定是0(黑色),如果一个点是背景,其灰度值应该是255,白色

所以对于孤立的噪点,他的周围应该都是白色,或者大多数点都是白色的,所以在判断的时候条件应该放宽,一个点是黑色并且相邻的点为白色的点的个数大于一个固定的值,那么这个点就是噪点。

说白了就是一个黑点周围都是白色的就是噪点

def depoint(image):
    '''
    对图片进行降噪
    :param image:
    :return:
    '''
    pixdata = image.load()
    w,h = image.size
    for y in range(1,h-1):
        for x in range(1,w-1):
            count = 0 # 用来判断是否达到噪点的要求
            # 一个点的八个方向,就是3X3矩阵中,噪点是5的位置
            # 245是可以变的值,但最好不要是250以上
            if pixdata[x,y-1] >245:
                count =count +1
            if pixdata[x,y+1] >245:
                count =count +1
            if pixdata[x-1,y] >245:
                count =count +1
            if pixdata[x+1,y] >245:
                count =count +1
            if pixdata[x-1, y - 1] > 245:
                count = count + 1
            if pixdata[x+1, y + 1] > 245:
                count = count + 1
            if pixdata[x - 1, y+1] > 245:
                count = count + 1
            if pixdata[x + 1, y-1] > 245:
                count = count + 1
            if count>4:
                pixdata[x,y] =255
    return image

效果如下

识别

下面是用比较古老的pytesser3识别验证码

github地址:https://github.com/tesseract-ocr/tesseract/wiki

下载地址:https://github.com/UB-Mannheim/tesseract/wiki

注意记得添加环境变量

新建TESSDATA_PREFIX 环境变量

cmd下可以运行tesseract


安装


pip install pytesseract 

只需要就可以了

pytesseract.image_to_string(image)

最终识别出来了,TBQ还有一个L没有识别出来,这是我调了很多次的对比度最好的结果

6. 反思

对于需要准确度高的识别,需要使用百度的api,而不是使用传统的方法。


一直原创,从未转载

请认准我,将我置标


转发,好看支持一下,感谢


  推荐站点

  • At-lib分类目录At-lib分类目录

    At-lib网站分类目录汇集全国所有高质量网站,是中国权威的中文网站分类目录,给站长提供免费网址目录提交收录和推荐最新最全的优秀网站大全是名站导航之家

    www.at-lib.cn
  • 中国链接目录中国链接目录

    中国链接目录简称链接目录,是收录优秀网站和淘宝网店的网站分类目录,为您提供优质的网址导航服务,也是网店进行收录推广,站长免费推广网站、加快百度收录、增加友情链接和网站外链的平台。

    www.cnlink.org
  • 35目录网35目录网

    35目录免费收录各类优秀网站,全力打造互动式网站目录,提供网站分类目录检索,关键字搜索功能。欢迎您向35目录推荐、提交优秀网站。

    www.35mulu.com
  • 就要爱网站目录就要爱网站目录

    就要爱网站目录,按主题和类别列出网站。所有提交的网站都经过人工审查,确保质量和无垃圾邮件的结果。

    www.912219.com
  • 伍佰目录伍佰目录

    伍佰网站目录免费收录各类优秀网站,全力打造互动式网站目录,提供网站分类目录检索,关键字搜索功能。欢迎您向伍佰目录推荐、提交优秀网站。

    www.wbwb.net