本书基于 Elasticsearch 2.x 版本,有些内容可能已经过时。 Elasticsearch: 权威指南 » 深入搜索 » 多字段搜索 » 最佳字段 « 单字符串查询 最佳字段查询调优 »
最佳字段编辑
假设有个网站允许用户搜索博客的内容, 以下面两篇博客内容文档为例:
PUT /my_index/my_type/1 { "title": "Quick brown rabbits", "body": "Brown rabbits are commonly seen." } PUT /my_index/my_type/2 { "title": "Keeping pets healthy", "body": "My quick brown fox eats rabbits on a regular basis." }
用户输入词组 “Brown fox” 然后点击搜索按钮。事先,我们并不知道用户的搜索项是会在 title
还是在 body
字段中被找到,但是,用户很有可能是想搜索相关的词组。用肉眼判断,文档 2 的匹配度更高,因为它同时包括要查找的两个词:
现在运行以下 bool
查询:
{ "query": { "bool": { "should": [ { "match": { "title": "Brown fox" }}, { "match": { "body": "Brown fox" }} ] } } }
但是我们发现查询的结果是文档 1 的评分更高:
{ "hits": [ { "_id": "1", "_score": 0.14809652, "_source": { "title": "Quick brown rabbits", "body": "Brown rabbits are commonly seen." } }, { "_id": "2", "_score": 0.09256032, "_source": { "title": "Keeping pets healthy", "body": "My quick brown fox eats rabbits on a regular basis." } } ] }
为了理解导致这样的原因,
需要回想一下 bool
是如何计算评分的:
should
语句中的两个查询。
加和两个查询的评分。
乘以匹配语句的总数。
除以所有语句总数(这里为:2)。
文档 1 的两个字段都包含 brown
这个词,所以两个 match
语句都能成功匹配并且有一个评分。文档 2 的 body
字段同时包含 brown
和 fox
这两个词,但 title
字段没有包含任何词。这样, body
查询结果中的高分,加上 title
查询中的 0 分,然后乘以二分之一,就得到比文档 1 更低的整体评分。
在本例中, title
和 body
字段是相互竞争的关系,所以就需要找到单个 最佳匹配 的字段。
如果不是简单将每个字段的评分结果加在一起,而是将 最佳匹配 字段的评分作为查询的整体评分,结果会怎样?这样返回的结果可能是: 同时 包含 brown
和 fox
的单个字段比反复出现相同词语的多个不同字段有更高的相关度。
dis_max 查询编辑
不使用 bool
查询,可以使用 dis_max
即分离 最大化查询(Disjunction Max Query) 。分离(Disjunction)的意思是 或(or) ,这与可以把结合(conjunction)理解成 与(and) 相对应。分离最大化查询(Disjunction Max Query)指的是: 将任何与任一查询匹配的文档作为结果返回,但只将最佳匹配的评分作为查询的评分结果返回 :
{ "query": { "dis_max": { "queries": [ { "match": { "title": "Brown fox" }}, { "match": { "body": "Brown fox" }} ] } } }
得到我们想要的结果为:
{ "hits": [ { "_id": "2", "_score": 0.21509302, "_source": { "title": "Keeping pets healthy", "body": "My quick brown fox eats rabbits on a regular basis." } }, { "_id": "1", "_score": 0.12713557, "_source": { "title": "Quick brown rabbits", "body": "Brown rabbits are commonly seen." } } ] }« 单字符串查询 最佳字段查询调优 »
Getting Started Videos
Starting Elasticsearch Introduction to Kibana Logstash Starter Guide官方地址:https://www.elastic.co/guide/cn/elasticsearch/guide/current/_best_fields.html