2021-02-22:一个象棋的棋盘,然后把整个棋盘放入第一象限,棋盘的最左下角是(0,0)位置,那么整个棋盘就是横坐标上9条线、纵坐标上10条线的区域。给你三个 参数 x,y,k。返回“马”从(0,0)位置出发,必须走k步。最后落在(x,y)上的方法数有多少种?
福哥答案2021-02-22:
自然智慧即可。
1.递归。有代码。
2.记忆化搜索。有代码。
3.动态规划。dp是三维数组。棋盘是二维数组,走k步,需要k+1个棋盘。有代码。
4.动态规划,空间压缩。只有相邻棋盘才有依赖,所以只需要用两个棋盘,就能走完。有代码。
代码用golang编写,代码如下:
package mainimport "fmt"func main() { a := 3 b := 4 k := 5 fmt.Println("1.递归:", jump1(a, b, k)) fmt.Println("---") fmt.Println("2.记忆化搜索:", jump2(a, b, k)) fmt.Println("---") fmt.Println("3.动态规划:", jump3(a, b, k)) fmt.Println("---") fmt.Println("4.动态规划,空间压缩:", jump4(a, b, k))}func jump1(a int, b int, k int) int { return process1(0, 0, k, a, b)}func process1(x int, y int, rest int, a int, b int) int { if x < 0 || x >= 9 || y < 0 || y >= 10 { return 0 } if rest == 0 { if x == a && y == b { return 1 } else { return 0 } } ways := process1(x+2, y+1, rest-1, a, b) ways += process1(x+2, y-1, rest-1, a, b) ways += process1(x-2, y+1, rest-1, a, b) ways += process1(x-2, y-1, rest-1, a, b) ways += process1(x+1, y+2, rest-1, a, b) ways += process1(x+1, y-2, rest-1, a, b) ways += process1(x-1, y+2, rest-1, a, b) ways += process1(x-1, y-2, rest-1, a, b) return ways}func jump2(a int, b int, k int) int { dp := make([][][]int, 10) for i := 0; i < 10; i++ { dp[i] = make([][]int, 9) for j := 0; j < 9; j++ { dp[i][j] = make([]int, k+1) for m := 0; m < k+1; m++ { dp[i][j][m] = -1 } } } return process2(0, 0, k, a, b, dp)}func process2(x int, y int, rest int, a int, b int, dp [][][]int) int { if x < 0 || x >= 10 { return 0 } if y < 0 || y >= 9 { return 0 } if dp[x][y][rest] != -1 { return dp[x][y][rest] } if rest == 0 { if x == a && y == b { dp[x][y][rest] = 1 return 1 } else { dp[x][y][rest] = 0 return 0 } } ways := process2(x+2, y+1, rest-1, a, b, dp) ways += process2(x+2, y-1, rest-1, a, b, dp) ways += process2(x-2, y+1, rest-1, a, b, dp) ways += process2(x-2, y-1, rest-1, a, b, dp) ways += process2(x+1, y+2, rest-1, a, b, dp) ways += process2(x+1, y-2, rest-1, a, b, dp) ways += process2(x-1, y+2, rest-1, a, b, dp) ways += process2(x-1, y-2, rest-1, a, b, dp) dp[x][y][rest] = ways return ways}func jump3(a int, b int, k int) int { dp := make([][][]int, 10) for i := 0; i < 10; i++ { dp[i] = make([][]int, 9) for j := 0; j < 9; j++ { dp[i][j] = make([]int, k+1) } } dp[a][b][0] = 1 for rest := 1; rest <= k; rest++ { for x := 0; x < 10; x++ { for y := 0; y < 9; y++ { ways := pick3(x+2, y+1, rest-1, dp) ways += pick3(x+1, y+2, rest-1, dp) ways += pick3(x-1, y+2, rest-1, dp) ways += pick3(x-2, y+1, rest-1, dp) ways += pick3(x-2, y-1, rest-1, dp) ways += pick3(x-1, y-2, rest-1, dp) ways += pick3(x+1, y-2, rest-1, dp) ways += pick3(x+2, y-1, rest-1, dp) dp[x][y][rest] = ways } } } return dp[0][0][k]}func pick3(x int, y int, rest int, dp [][][]int) int { if x < 0 || x >= 10 || y < 0 || y >= 9 { return 0 } return dp[x][y][rest]}func jump4(a int, b int, k int) int { dp := make([][][]int, 10) for i := 0; i < 10; i++ { dp[i] = make([][]int, 9) for j := 0; j < 9; j++ { dp[i][j] = make([]int, 2) } } dp[a][b][0] = 1 for rest := 1; rest <= k; rest++ { for x := 0; x < 10; x++ { for y := 0; y < 9; y++ { ways := pick4(x+2, y+1, dp) ways += pick4(x+1, y+2, dp) ways += pick4(x-1, y+2, dp) ways += pick4(x-2, y+1, dp) ways += pick4(x-2, y-1, dp) ways += pick4(x-1, y-2, dp) ways += pick4(x+1, y-2, dp) ways += pick4(x+2, y-1, dp) dp[x][y][1] = ways } } for i := 0; i < 10; i++ { for j := 0; j < 9; j++ { dp[i][j][0], dp[i][j][1] = dp[i][j][1], 0 } } } return dp[0][0][0]}func pick4(x int, y int, dp [][][]int) int { if x < 0 || x >= 10 || y < 0 || y >= 9 { return 0 } return dp[x][y][0]}
执行结果如下:
左神java代码
评论