伍佰目录 短网址
  当前位置:海洋目录网 » 站长资讯 » 站长资讯 » 文章详细 订阅RssFeed

关于JavaScript的数组随机排序

来源:网络转载 浏览:38253次 时间:2023-08-14

JavaScript 开发中有时会遇到要将一个数组随机排序(shuffle)的需求,一个常见的写法是这样:

function shuffle(arr) { 
 
   arr.sort(function () { 
 
      return Math.random() - 0.5; 
 
   }); 
 
}

或者使用更简洁的 ES6 的写法:

function shuffle(arr) { 
 
    arr.sort(() => Math.random() - 0.5); 
 
}

我也曾经经常使用这种写法,不久前才意识到,这种写法是有问题的,它并不能真正地随机打乱数组。

问题

看下面的代码,我们生成一个长度为 10 的数组['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'],使用上面的方法将数组乱序,执行多次后,会发现每个元素仍然有很大机率在它原来的位置附近出现。

let n = 10000; 
 
let count = (new Array(10)).fill(0); 
 
  
 
for (let i = 0; i < n; i ++) { 
 
    let arr = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']; 
 
    arr.sort(() => Math.random() - 0.5); 
 
    count[arr.indexOf('a')]++; 
 
} 
 
  
 
console.log(count);

在 Node.JS 6 中执行,输出[ 2891, 2928, 1927, 1125, 579, 270, 151, 76, 34, 19 ](带有一定随机性,每次结果都不同,但大致分布应该一致),即进行 10000 次排序后,字母'a'(数组中的第一个元素)有约 2891 次出现在第一个位置、2928 次出现在第二个位置,与之对应的只有 19 次出现在最后一个位置。如果把这个分布绘制成图像,会是下面这样:

类似地,我们可以算出字母'f'(数组中的第六个元素)在各个位置出现的分布为[ 312, 294, 579, 1012, 1781, 2232, 1758, 1129, 586, 317 ],图像如下:

如果排序真的是随机的,那么每个元素在每个位置出现的概率都应该一样,实验结果各个位置的数字应该很接近,而不应像现在这样明显地集中在原来位置附近。因此,我们可以认为,使用形如arr.sort(() => Math.random() - 0.5)这样的方法得到的并不是真正的随机排序。

另外,需要注意的是上面的分布仅适用于数组长度不超过 10 的情况,如果数组更长,比如长度为 11,则会是另一种分布。比如:

let a = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k']; // 长度为11 
 
let n = 10000; 
 
let count = (new Array(a.length)).fill(0); 
 
  
 
for (let i = 0; i < n; i ++) { 
 
    let arr = [].concat(a); 
 
    arr.sort(() => Math.random() - 0.5); 
 
    count[arr.indexOf('a')]++; 
 
} 
 
  
 
console.log(count);

在 Node.JS 6 中执行,结果为[ 785, 819, 594, 679, 941, 1067, 932, 697, 624, 986, 1876 ],其中第一个元素'a'的分布图如下:

sort_03

分布不同的原因是 v8 引擎中针对短数组和长数组使用了不同的排序方法(下面会讲)。可以看到,两种算法的结果虽然不同,但都明显不够均匀。

国外有人写了一个Shuffle算法可视化的页面,在上面可以更直观地看到使用arr.sort(() => Math.random() - 0.5)的确是很不随机的。

探索

看了一下ECMAScript中关于Array.prototype.sort(comparefn)的标准,其中并没有规定具体的实现算法,但是提到一点:

Calling comparefn(a,b) always returns the same value v when given a specific pair of values a and b as its two arguments.

也就是说,对同一组a、b的值,comparefn(a, b)需要总是返回相同的值。而上面的() => Math.random() - 0.5(即(a, b) => Math.random() - 0.5)显然不满足这个条件。

翻看v8引擎数组部分的源码,注意到它出于对性能的考虑,对短数组使用的是插入排序,对长数组则使用了快速排序,至此,也就能理解为什么() => Math.random() - 0.5并不能真正随机打乱数组排序了。(有一个没明白的地方:源码中说的是对长度小于等于 22 的使用插入排序,大于 22 的使用快排,但实际测试结果显示分界长度是 10。)

解决方案

知道问题所在,解决方案也就比较简单了。

方案一

既然(a, b) => Math.random() - 0.5的问题是不能保证针对同一组a、b每次返回的值相同,那么我们不妨将数组元素改造一下,比如将每个元素i改造为:

let new_i = { 
 
    v: i, 
 
    r: Math.random() 
 
};

即将它改造为一个对象,原来的值存储在键v中,同时给它增加一个键r,值为一个随机数,然后排序时比较这个随机数:

arr.sort((a, b) => a.r - b.r);

完整代码如下:

function shuffle(arr) { 
 
    let new_arr = arr.map(i => ({v: i, r: Math.random()})); 
 
    new_arr.sort((a, b) => a.r - b.r); 
 
    arr.splice(0, arr.length, ...new_arr.map(i => i.v)); 
 
} 
 
  
 
let a = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']; 
 
let n = 10000; 
 
let count = (new Array(a.length)).fill(0); 
 
  
 
for (let i = 0; i < n; i ++) { 
 
    shuffle(a); 
 
    count[a.indexOf('a')]++; 
 
} 
 
  
 
console.log(count);

一次执行结果为:[ 1023, 991, 1007, 967, 990, 1032, 968, 1061, 990, 971 ]。多次验证,同时在这儿查看shuffle(arr)函数结果的可视化分布,可以看到,这个方法可以认为足够随机了。

方案二(Fisher–Yates shuffle)

需要注意的是,上面的方法虽然满足随机性要求了,但在性能上并不是很好,需要遍历几次数组,还要对数组进行splice等操作。

考察Lodash 库中的 shuffle 算法,注意到它使用的实际上是Fisher–Yates 洗牌算法,这个算法由 Ronald Fisher 和 Frank Yates 于 1938 年提出,然后在 1964 年由 Richard Durstenfeld 改编为适用于电脑编程的版本。用伪代码描述如下:

-- To shuffle an array a of n elements (indices 0..n-1): 
 
for i from n−1 downto 1 do 
 
     j ← random integer such that 0 ≤ j ≤ i 
 
     exchange a[j] and a[i]

一个实现如下(ES6):

function shuffle(arr) { 
 
    let i = arr.length; 
 
    while (i) { 
 
        let j = Math.floor(Math.random() * i--); 
 
        [arr[j], arr[i]] = [arr[i], arr[j]]; 
 
    } 
 
}

或者对应的 ES5 版本:

function shuffle(arr) { 
 
  var i = arr.length, t, j; 
 
  while (i) { 
 
    j = Math.floor(Math.random() * i--); 
 
    t = arr[i]; 
 
    arr[i] = arr[j]; 
 
    arr[j] = t; 
 
  } 
 
}

小结

如果要将数组随机排序,千万不要再用(a, b) => Math.random() - 0.5这样的方法。目前而言,Fisher–Yates shuffle 算法应该是最好的选择。


  推荐站点

  • At-lib分类目录At-lib分类目录

    At-lib网站分类目录汇集全国所有高质量网站,是中国权威的中文网站分类目录,给站长提供免费网址目录提交收录和推荐最新最全的优秀网站大全是名站导航之家

    www.at-lib.cn
  • 中国链接目录中国链接目录

    中国链接目录简称链接目录,是收录优秀网站和淘宝网店的网站分类目录,为您提供优质的网址导航服务,也是网店进行收录推广,站长免费推广网站、加快百度收录、增加友情链接和网站外链的平台。

    www.cnlink.org
  • 35目录网35目录网

    35目录免费收录各类优秀网站,全力打造互动式网站目录,提供网站分类目录检索,关键字搜索功能。欢迎您向35目录推荐、提交优秀网站。

    www.35mulu.com
  • 就要爱网站目录就要爱网站目录

    就要爱网站目录,按主题和类别列出网站。所有提交的网站都经过人工审查,确保质量和无垃圾邮件的结果。

    www.912219.com
  • 伍佰目录伍佰目录

    伍佰网站目录免费收录各类优秀网站,全力打造互动式网站目录,提供网站分类目录检索,关键字搜索功能。欢迎您向伍佰目录推荐、提交优秀网站。

    www.wbwb.net