本书基于 Elasticsearch 2.x 版本,有些内容可能已经过时。 Elasticsearch: 权威指南 » 数据建模 » 关联关系处理 » 字段折叠 « 非规范化你的数据 非规范化和并发 »
字段折叠编辑
一个普遍的需求是需要通过特定字段进行分组。
例如我们需要按照用户名称 分组 返回最相关的博客文章。
按照用户名分组意味着进行 terms
聚合。
为能够按照用户 整体 名称进行分组,名称字段应保持 not_analyzed
的形式,
具体说明参考 聚合与分析:
PUT /my_index/_mapping/blogpost { "properties": { "user": { "properties": { "name": { "type": "string", "fields": { "raw": { "type": "string", "index": "not_analyzed" } } } } } } }
|
|
|
|
然后添加一些数据:
PUT /my_index/user/1 { "name": "John Smith", "email": "john@smith.com", "dob": "1970/10/24" } PUT /my_index/blogpost/2 { "title": "Relationships", "body": "It's complicated...", "user": { "id": 1, "name": "John Smith" } } PUT /my_index/user/3 { "name": "Alice John", "email": "alice@john.com", "dob": "1979/01/04" } PUT /my_index/blogpost/4 { "title": "Relationships are cool", "body": "It's not complicated at all...", "user": { "id": 3, "name": "Alice John" } }
现在我们来查询标题包含 relationships
并且作者名包含 John
的博客,查询结果再按作者名分组,感谢 top_hits
aggregation
提供了按照用户进行分组的功能:
GET /my_index/blogpost/_search { "size" : 0, "query": { "bool": { "must": [ { "match": { "title": "relationships" }}, { "match": { "user.name": "John" }} ] } }, "aggs": { "users": { "terms": { "field": "user.name.raw", "order": { "top_score": "desc" } }, "aggs": { "top_score": { "max": { "script": "_score" }}, "blogposts": { "top_hits": { "_source": "title", "size": 5 }} } } } }
|
我们感兴趣的博客文章是通过 |
|
|
|
|
|
|
|
|
这里显示简短响应结果:
... "hits": { "total": 2, "max_score": 0, "hits": [] }, "aggregations": { "users": { "buckets": [ { "key": "John Smith", "doc_count": 1, "blogposts": { "hits": { "total": 1, "max_score": 0.35258877, "hits": [ { "_index": "my_index", "_type": "blogpost", "_id": "2", "_score": 0.35258877, "_source": { "title": "Relationships" } } ] } }, "top_score": { "value": 0.3525887727737427 } }, ...
|
因为我们设置 |
| 在顶层查询结果中出现的每一个用户都会有一个对应的桶。 |
|
在每个用户桶下面都会有一个 |
| 用户桶按照每个用户最相关的博客文章进行排序。 |
使用 top_hits
聚合等效执行一个查询返回这些用户的名字和他们最相关的博客文章,然后为每一个用户执行相同的查询,以获得最好的博客。但前者的效率要好很多。
每一个桶返回的顶层查询命中结果是基于最初主查询进行的一个轻量 迷你查询 结果集。这个迷你查询提供了一些你期望的常用特性,例如高亮显示以及分页功能。
« 非规范化你的数据 非规范化和并发 »Getting Started Videos
- Starting Elasticsearch
- Introduction to Kibana
- Logstash Starter Guide
官方地址:https://www.elastic.co/guide/cn/elasticsearch/guide/current/top-hits.html