用管道简化工作流
使用k折交叉验证评估模型性能
使用学习和验证曲线调试算法
通过网格搜索进行超参数调优
比较不同的性能评估指标
1. 加载基本工具库
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt%matplotlib inlineplt.style.use("ggplot")import warningswarnings.filterwarnings("ignore")
2. 加载数据,并做基本预处理
# 加载数据
df = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data",header=None)
# 做基本的数据预处理
from sklearn.preprocessing import LabelEncoder
X = df.iloc[:,2:].values
y = df.iloc[:,1].values
le = LabelEncoder() #将M-B等字符串编码成计算机能识别的0-1
y = le.fit_transform(y)
le.transform(['M','B'])
# 数据切分8:2
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,stratify=y,random_state=1)
3. 把所有的操作全部封在一个管道pipeline内形成一个工作流:标准化+PCA+逻辑回归
完成以上操作,共有两种方式:
方式1:make_pipeline
# 把所有的操作全部封在一个管道pipeline内形成一个工作流:
## 标准化+PCA+逻辑回归
### 方式1:make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
pipe_lr1 = make_pipeline(StandardScaler(),PCA(n_components=2),LogisticRegression(random_state=1))
pipe_lr1.fit(X_train,y_train)
y_pred1 = pipe_lr.predict(X_test)
print("Test Accuracy: %.3f"% pipe_lr1.score(X_test,y_test))
Test Accuracy: 0.956方式2:Pipeline
# 把所有的操作全部封在一个管道pipeline内形成一个工作流:
## 标准化+PCA+逻辑回归
### 方式2:Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
pipe_lr2 = Pipeline([['std',StandardScaler()],['pca',PCA(n_components=2)],['lr',LogisticRegression(random_state=1)]])
pipe_lr2.fit(X_train,y_train)
y_pred2 = pipe_lr2.predict(X_test)
print("Test Accuracy: %.3f"% pipe_lr2.score(X_test,y_test))
Test Accuracy: 0.956二、使用k折交叉验证评估模型性能评估方式1:k折交叉验证
评估方式2:分层k折交叉验证# 评估方式1:k折交叉验证
from sklearn.model_selection import cross_val_score
scores1 = cross_val_score(estimator=pipe_lr,X = X_train,y = y_train,cv=10,n_jobs=1)
print("CV accuracy scores:%s" % scores1)
print("CV accuracy:%.3f +/-%.3f"%(np.mean(scores1),np.std(scores1)))
三、 使用学习和验证曲线调试算法# 评估方式2:分层k折交叉验证
from sklearn.model_selection import StratifiedKFold
kfold = StratifiedKFold(n_splits=10,random_state=1).split(X_train,y_train)
scores2 = []
for k,(train,test) in enumerate(kfold):
pipe_lr.fit(X_train[train],y_train[train])
score = pipe_lr.score(X_train[test],y_train[test])
scores2.append(score)
print('Fold:%2d,Class dist.:%s,Acc:%.3f'%(k+1,np.bincount(y_train[train]),score))
print('\nCV accuracy :%.3f +/-%.3f'%(np.mean(scores2),np.std(scores2)))
如果模型过于复杂,即模型有太多的自由度或者参数,就会有过拟合的风险(高方差);而模型过于简单,则会有欠拟合的风险(高偏差)。
1. 用学习曲线诊断偏差与方差
2. 用验证曲线解决欠拟合和过拟合# 用学习曲线诊断偏差与方差
from sklearn.model_selection import learning_curve
pipe_lr3 = make_pipeline(StandardScaler(),LogisticRegression(random_state=1,penalty='l2'))
train_sizes,train_scores,test_scores = learning_curve(estimator=pipe_lr3,X=X_train,y=y_train,train_sizes=np.linspace(0.1,1,10),cv=10,n_jobs=1)
train_mean = np.mean(train_scores,axis=1)
train_std = np.std(train_scores,axis=1)
test_mean = np.mean(test_scores,axis=1)
test_std = np.std(test_scores,axis=1)
plt.plot(train_sizes,train_mean,color='blue',marker='o',markersize=5,label='training accuracy')
plt.fill_between(train_sizes,train_mean+train_std,train_mean-train_std,alpha=0.15,color='blue')
plt.plot(train_sizes,test_mean,color='red',marker='s',markersize=5,label='validation accuracy')
plt.fill_between(train_sizes,test_mean+test_std,test_mean-test_std,alpha=0.15,color='red')
plt.xlabel("Number of training samples")
plt.ylabel("Accuracy")
plt.legend(lo����,չ��c='lower right')
plt.ylim([0.8,1.02])
plt.show()
四、通过网格搜索进行超参数调优# 用验证曲线解决欠拟合和过拟合
from sklearn.model_selection import validation_curve
pipe_lr3 = make_pipeline(StandardScaler(),LogisticRegression(random_state=1,penalty='l2'))
param_range = [0.001,0.01,0.1,1.0,10.0,100.0]
train_scores,test_scores = validation_curve(estimator=pipe_lr3,X=X_train,y=y_train,param_name='logisticregression__C',param_range=param_range,cv=10,n_jobs=1)
train_mean = np.mean(train_scores,axis=1)
train_std = np.std(train_scores,axis=1)
test_mean = np.mean(test_scores,axis=1)
test_std = np.std(test_scores,axis=1)
plt.plot(param_range,train_mean,color='blue',marker='o',markersize=5,label='training accuracy')
plt.fill_between(param_range,train_mean+train_std,train_mean-train_std,alpha=0.15,color='blue')
plt.plot(param_range,test_mean,color='red',marker='s',markersize=5,label='validation accuracy')
plt.fill_between(param_range,test_mean+test_std,test_mean-test_std,alpha=0.15,color='red')
plt.xscale('log')
plt.xlabel("Parameter C")
plt.ylabel("Accuracy")
plt.legend(loc='lower right')
plt.ylim([0.8,1.02])
plt.show()
如果只有一个参数需要调整,那么用验证曲线手动调整是一个好方法,但是随着需要调整的超参数越来越多的时候,我们能不能自动去调整呢?!!!注意对比各个算法的时间复杂度。
(注意参数与超参数的区别:参数可以通过优化算法进行优化,如逻辑回归的系数;超参数是不能用优化模型进行优化的,如正则话的系数。)
方式1:网格搜索GridSearchCV()# 方式1:网格搜索GridSearchCV()
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
import time
start_time = time.time()
pipe_svc = make_pipeline(StandardScaler(),SVC(random_state=1))
param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]
param_grid = [{'svc__C':param_range,'svc__kernel':['linear']},{'svc__C':param_range,'svc__gamma':param_range,'svc__kernel':['rbf']}]
gs = GridSearchCV(estimator=pipe_svc,param_grid=param_grid,scoring='accuracy',cv=10,n_jobs=-1)
gs = gs.fit(X_train,y_train)
end_time = time.time()
print("网格搜索经历时间:%.3f S" % float(end_time-start_time))
print(gs.best_score_)
print(gs.best_params_)
方式2:随机网格搜索RandomizedSearchCV()
方式3:嵌套交叉验证# 方式2:随机网格搜索RandomizedSearchCV()
from sklearn.model_selection import RandomizedSearchCV
from sklearn.svm import SVC
import time
start_time = time.time()
pipe_svc = make_pipeline(StandardScaler(),SVC(random_state=1))
param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]
param_grid = [{'svc__C':param_range,'svc__kernel':['linear']},{'svc__C':param_range,'svc__gamma':param_range,'svc__kernel':['rbf']}]
# param_grid = [{'svc__C':param_range,'svc__kernel':['linear','rbf'],'svc__gamma':param_range}]
gs = RandomizedSearchCV(estimator=pipe_svc, param_distributions=param_grid,scoring='accuracy',cv=10,n_jobs=-1)
gs = gs.fit(X_train,y_train)
end_time = time.time()
print("随机网格搜索经历时间:%.3f S" % float(end_time-start_time))
print(gs.best_score_)
print(gs.best_params_)
五、比较不同的性能评估指标# 方式3:嵌套交叉验证
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score
import time
start_time = time.time()
pipe_svc = make_pipeline(StandardScaler(),SVC(random_state=1))
param_range = [0.0001,0.001,0.01,0.1,1.0,10.0,100.0,1000.0]
param_grid = [{'svc__C':param_range,'svc__kernel':['linear']},{'svc__C':param_range,'svc__gamma':param_range,'svc__kernel':['rbf']}]
gs = GridSearchCV(estimator=pipe_svc, param_grid=param_grid,scoring='accuracy',cv=2,n_jobs=-1)
scores = cross_val_score(gs,X_train,y_train,scoring='accuracy',cv=5)
end_time = time.time()
print("嵌套交叉验证:%.3f S" % float(end_time-start_time))
print('CV accuracy :%.3f +/-%.3f'%(np.mean(scores),np.std(scores)))
有时候,准确率不是我们唯一需要考虑的评价指标,因为有时候会存在各类预测错误的代价不一样。例如:在预测一个人的肿瘤疾病的时候,如果病人A真实得肿瘤但是我们预测他是没有肿瘤,跟A真实是健康但是预测他是肿瘤,二者付出的代价很大区别(想想为什么)。所以我们需要其他更加广泛的指标:
1. 绘制混淆矩阵# 绘制混淆矩阵
from sklearn.metrics import confusion_matrix
pipe_svc.fit(X_train,y_train)
y_pred = pipe_svc.predict(X_test)
confmat = confusion_matrix(y_true=y_test,y_pred=y_pred)
fig,ax = plt.subplots(figsize=(2.5,2.5))
ax.matshow(confmat, cmap=plt.cm.Blues,alpha=0.3)
for i in range(confmat.shape[0]):
for j in range(confmat.shape[1]):
ax.text(x=j,y=i,s=confmat[i,j],va='center',ha='center')
plt.xlabel('predicted label')
plt.ylabel('true label')
plt.show()
2. 各种指标的计算
# 各种指标的计算
from sklearn.metrics import precision_score,recall_score,f1_score
print('Precision:%.3f'%precision_score(y_true=y_test,y_pred=y_pred))
print('recall_score:%.3f'%recall_score(y_true=y_test,y_pred=y_pred))
print('f1_score:%.3f'%f1_score(y_true=y_test,y_pred=y_pred))
3. 将不同的指标与GridSearch结合
# 将不同的指标与GridSearch结合from sklearn.metrics import make_scorer,f1_scorescorer = make_scorer(f1_score,pos_label=0)gs = GridSearchCV(estimator=pipe_svc,param_grid=param_grid,scoring=scorer,cv=10)gs = gs.fit(X_train,y_train)print(gs.best_score_)print(gs.best_params_)
4. 绘制ROC曲线
# 绘制ROC曲线from sklearn.metrics import roc_curve,aucfrom sklearn.metrics import make_scorer,f1_scorescorer = make_scorer(f1_score,pos_label=0)gs = GridSearchCV(estimator=pipe_svc,param_grid=param_grid,scoring=scorer,cv=10)y_pred = gs.fit(X_train,y_train).decision_function(X_test)#y_pred = gs.predict(X_test)fpr,tpr,threshold = roc_curve(y_test, y_pred) ###计算真阳率和假阳率roc_auc = auc(fpr,tpr) ###计算auc的值plt.figure()lw = 2plt.figure(figsize=(7,5))plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) ###假阳率为横坐标,真阳率为纵坐标做曲线plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')plt.xlim([-0.05, 1.0])plt.ylim([-0.05, 1.05])plt.xlabel('False Positive Rate')plt.ylabel('True Positive Rate')plt.title('Receiver operating characteristic ')plt.legend(loc="lower right")plt.show()
本文电子版及代码源文件 后台回复 模型评估 获取